Category Archives: glaciers

In the news: Lynda Mapes of the Seattle Times, covers ENVIR 495C

Lynda Mapes of the Seattle Times recently covered my summer course with this excellent article and video.

The group poses on Grand Peak (photo by Steve Ringman of the Seattle Times)

The group poses on Grand Peak (photo by Steve Ringman of the Seattle Times)

Or paste this link into your browswer:

http://www.seattletimes.com/life/outdoors/students-trek-a-reset-for-the-human-spirit-as-national-park-service-turns-100/

9 days in the Olympic Mountains with ENVIR 495C 2016, “Landscape Change in the Pacific Northwest”

I recently returned from my annual pilgrimmage to the Olympic Mountains with ENVIR 495C, “Landscape Change in the Pacific Northwest”. The title of the course doesn’t entirely do justice to what this interdisciplinary course is about.  Below I will paste in some text I wrote from the introduction to our course blog (http://envir495c2016.blogspot.com/). The rest of the entries in the course blog are prepared by students, and include documentation of the trip, daily discussion summaries, and reflections on the “primeval” landscape.

Again, to give you a sense of the course, below is the introduction to the blog which is linked above:

The group poses on Sentinel Peak, >20 trail miles from any road, with Mount Anderson in the background. From our high perch here in the inner core of the Olympic mountains, we looked down on soaring ravens, saw swallowtail butterflies rising and twirling together along the adjacent cliff face, found an alpine flower species endemic to the Olympic Mountains (isolated on high ridges by past climate changes), looked across the now free-flowing Elwha River and that valley's swathe of unbroken lowland forests, and contemplated the effects of anthropogenic climate change on Anderson's Eel Glacier and surrounding ecosystems. We would also take time here to individually think and write about the value of large ecosystem preserves (such as Olympic National Park), and the kind of remote wilderness recreation experience they afford as humanity enters the Anthropocene, and as nearby Seattle prepares to take on another 1.5 million people over the next 25 years. Photo Credit: Tim Billo

The group poses on Sentinel Peak, >20 trail miles from any road, with Mount Anderson in the background. From our high perch here in the inner core of the Olympic mountains, we looked down on soaring ravens, saw swallowtail butterflies rising and twirling together along the adjacent cliff face, found an alpine flower species endemic to the Olympic Mountains (isolated on high ridges by past climate changes), looked across the now free-flowing Elwha River and that valley’s swathe of unbroken lowland forests, and contemplated the effects of anthropogenic climate change on Anderson’s Eel Glacier and surrounding ecosystems. We would also take time here to individually think and write about the value of large ecosystem preserves (such as Olympic National Park), and the kind of remote wilderness recreation experience they afford as humanity enters the Anthropocene, and as nearby Seattle prepares to take on another 1.5 million people over the next 25 years. Photo Credit: Tim Billo

This blog documents the fourth annual offering (click here and  here for previous years’ blogs, especially to compare to last year’s unusual heat and drought conditions) of the interdisciplinary summer field course, ENVIR 495C/HONORS 220B: Landscape Change in the Pacific Northwest, offered by the University of Washington Environmental Studies Program and Interdisciplinary Honors Program. The course, taught primarily through the lens of a nine-day backpacking trip (July 9-17, 2016) in Olympic National Park, explores changes in the regional landscape in the distant (back to the last ice age) and recent (the last 150 years of European settlement and industrialization) past, and what these recent human-induced changes mean for our future, from ecological, psychological, and philosophical standpoints. In short, the course uses the Olympic Peninsula’s over one million contiguous acres of roadless land, as a “baseline” for understanding global change in the Anthropocene, and thinking about where we are headed as a species at this critical juncture in Earth’s history. This year, the 100th anniversary of the National Park Service, we were especially interested in exploring the history of wilderness preservation in national parks, and how the concept of “wilderness” (which I’ll talk about in the next paragraph), especially in high profile national parks, has shaped the American conservation movement (often to the exclusion of historically marginalized groups) and psyche–particularly our relationship to nature. We also explored challenges the National Park Service is facing now and likely to face over the next 100 years.
It is worth noting that before beginning our hiking journey, we visited the Jamestown S’Klallam reservation near Sequim to learn about S’Klallam history and culture—especially their cultural and ecological relationships to the local landscape—and to acknowledge that we would be spending the next 9 days traveling through the homelands of the S’Klallam people. We would also continue wrestling with contentious discussion topic of  “wilderness” as a received concept (rather than a true place or state of nature) which makes sense only in the context of European occupation of the landscape, beginning in earnest some 200 years ago here in the northwest with Captain Vancouver’s detailed descriptions of the “pristine” landscapes of the Puget Sound (effectively refusing to acknowledge the real impact that Native Americans had in shaping much of what he was seeing—still I think we can grant him that by the standard of what was to come only 100 years later, or even what he was used to seeing in England at the time, the landscape was quite pristine). While wilderness parks such as Olympic represent a huge victory for society in the face of a culture that viewed the landscape as one giant “land-grab” by and for private interests, the result of viewing our wilderness national parks as “pristine” has been the creation of preserves that for the most part hold people as “unnatural”. One tragic consequence has been the barring of Native Americans from their traditional homelands, including traditional food sources and sometimes even an entire way of life. Meanwhile these homelands were maintained as a recreational outlet for all, although in reality mainly for a new class of wealthy urbanites seeking to test their mettle in an industrial era bereft of physical challenge and nature experience. In its most perverse extreme, some argue that the creation of absolute wilderness preserves has led to an excuse for the reckless management of matrix lands outside of the preserves, in our case right up to the boundary of Olympic National Park, with devastating consequences for some species, such as the Northern Spotted Owl. The point of our journey, however, was to explore these ideas for ourselves, and ask what the relevance of wilderness–the place and the concept– is in today’s world, a world where wilderness is seeing more visitors than ever before, but far fewer visitors per capita than ever before.

Because most students work full-time summer jobs, the only required in-person meeting for the course was the 9 day backpacking trip, from Saturday through to the Sunday on the following weekend—so students effectively had to get one week off from work. The academic portion of the course, however, included 3 weeks of online work prior to the trip, and several online reflective/research assignments following the trip. The course began with a series of four brief reading assignments and online discussions designed to introduce students to relevant course topics: 1) historical literature of wilderness (think Thoreau, Muir, Leopold, and some other classic texts), 2) Post-modern critiques of wilderness including William Cronon’s famous essay “The Trouble with Wilderness”, and more recently a 2011 essay by Seattle resident and Nature Conservancy scientist, Peter Kareiva: “Conservation in the Anthropocene: Beyond Solitude and Fragility”, 3) reasons, ramifications, and solutions to the lack of cultural/ethnic diversity in national park visitation and national park employment, spurred in part by Seattle writer/activist Glenn Nelson’s editorial “Why Are Our Parks so White?”, and 4) literature of the Olympic Peninsula, including excerpts from William Dietrich’s interview with a Forks logger in his book, Final Forest, human history/culture of the Olympic Peninsula and Olympic National Park from Tim McNulty’s Olympic National Park: A Natural History, and excerpts from journals of early explorers (including John Muir, the Press Expedition, and Archibald Menzies). The students were also given access to a vast array of other relevant literature, including management plans for Olympic National Park, which they used as they planned discussions they would lead on the trip, and essays to be completed following the trip.
During the course, we spent our days studying natural history, and observing the effects of climate change (past and present) and various landscape management practices (past and present) on species and ecosystems. For reflective purposes, we also spent portions of some days alone; hiking, thinking, and writing in inspirational places along the hiking route. We spent our evenings in student-led discussions of topics chosen by the students themselves, often incorporating outside quotes and background studies as a way to introduce the topic and provide more fodder for discussion. Discussion topics this year included: 1) ecology of exotic, or debatedly exotic, species in Olympic National Park, such as Mountain Goats and Barred Owls respectively, and issues surrounding their management, 2) general philosophies governing human management of “wilderness”—which by literal interpretation of the Wilderness Act, should not be a managed space—including how to regulate human visitation rates and activities while managing for “enjoyment” for all—a mandate of the National Park Service, 3) the wilderness preservation movement and ramifications of the figurative (and sometimes literal) separation of man from nature, 4) nature and wilderness as an antidote to psychological health issues in the Anthropocene, 5) how to make wilderness national parks available and relevant to diverse populations broadly defined (including local and low-income communities, and people of color), 6) the use of gender stereotypes to personify nature and wilderness, and how these gender stereotypes have affected the exploitation or preservation of nature, as well as how gender stereotypes historically and currently affect the ability of women to recreate and work in wilderness, and 7) the Seattle 2035 plan and housing equality as a foundation for better conservation of non-wilderness spaces and a healthy regional landscape. Individual blog entries will further document the breadth and depth of daily discussions.
One of the joys of this course for me is to re-visit the same places year after year to understand the process of change on both short and long time scales. While last year was one of the driest years on record in the Olympics (not due to lack of winter precipitation, but due mainly to record warm temperatures causing winter precipitation to fall as rain) and hottest the world has ever experienced in recorded history, this year the terrain sported a healthy snowpack left over from the winter. Despite a warm spring, high north-facing basins still held plenty of snow and streams were flowing well. This year (again, unlike last year) there were no wildfires burning in the park (although as I write this, some small lightning caused fires have just started). One major theme of the course is climate change (past, present, and future), and we were excited to return this year to see, among other things, how a remnant glacier we discovered last year was faring after last year’s heat and drought. Ice worms, a direct legacy of the last ice age (explained later in the blog), and one of the animals most endangered by glacial recession in the Pacific Northwest, are one indication of the presence of glacial ice. We were stunned to find that where we had found hundreds of ice worms last year, we were hard pressed to find only 5 this year, indicating that this glacier had melted down to near nothing by the end of last summer–indicative of trends in loss of glacial ice all over the northwest, which should give us pause as we think about future ramifications for late summer streamflow for salmon, drinking water, and irrigation. I was also saddened to discover that a 700 year old tree that I had come to know along our route over the years, a relict of a previous climate regime, had finally come to its end and toppled across our trail. But I look forward to future years of watching it gradually return to the soil.
The Olympic Mountains are an especially rewarding place for a biologist. Separated from the Cascades and Rockies by a water barrier today, and historically by ice sheets flowing through the Puget Trough and Strait of Juan de Fuca as recently as only 16,500 years ago (sounds like a long time ago, but really a geologic “eye-blink” and not that many generations ago for our longest lived trees!), the Olympic Mountains are like an evolutionary laboratory. During the last ice age, many of the highest ridges and some valley bottoms remained ice free, providing refugia for many local species, as well as arctic species that had moved south. Many of these species can still be found today in small relictual populations in the Olympic Mountains, and some have evolved in isolation to become distinct from their nearest relatives in the Cascades, Rockies, or Arctic. On this course, we have been able to study rare disjunct populations of Rocky Mountain Juniper, Engelmann Spruce, and Arctic Willow, as well as species that have evolved into forms endemic to the Olympic Mountains (including iconic alpine plant species such as the Piper’s Bellflower, Flett’s Violet, and Cotton’s Milkvetch, and iconic mammals such as the Olympic Marmot). Plant and animal species isolated on high ridges and in alpine terrain will be some of the first to go extinct given current projections for human-induced climate change, and land management agencies such as the Park Service will face an agonizing conundrum in the next 100 years whether or not to move species to places more climatically amenable (assuming they are incapable of dispersal themselves, and assuming that moving them doesn’t endanger other species that are native to the new location), or to let them go extinct one by one. In the meantime, many of these species are also threatened directly by the presence of non-native goats, and indirectly by the extermination of top predators such as the Gray Wolf. Whether we have a moral or ecological imperative eradicate, move, or re-introduce organisms to save them and/or the ecosystem, is a question which we explore on the course, especially in “wilderness” areas which are traditionally thought of as areas where nature can and should be left to take care of itself.
Between 1895 and 2015, the Seattle area grew from 40,000 people to over 4.2 million. In the next 25 years, Seattle will grow by another 1.5 million. Virtually every piece of accessible habitat in the lowlands of the Puget Trough has been severely impacted by humans at one time or another, and in some cases irrevocably. “Wilderness” controversies aside, it was by stroke of luck (due in part to the inaccessibility of the terrain in the early days), and a big dash of courage from some forward-thinking leaders around the turn of the 19th Century and early 20th Century, that Olympic National Park was saved from the ax and saw. Only 25 miles as the crow (or eagle) flies from Seattle, an international hub of high tech industry, one can begin a walk into the Olympic Mountains, a wilderness area of over 1 million contiguous acres (approximately 1600 sq miles), and (unlike the Cascade Range) not bisected by any roads. It is this short gradient from ultra-urban to wilderness, that makes the region such an appealing place to live, as well as a unique place to reflect on landscape change (past, present, and future), and ramifications of this change (namely, the loss of “wild” spaces) for society in the Anthropocene. Regardless of your feelings about the “wilderness” concept, we must recognize the value of the “untrammeled” spaces the National Park Service has preserved for all people from all walks of life to experience, and the opportunity that this has afforded us as a society to decide how we will use and value these spaces over the next 100 years or more. As you’ll see in this blog, every student, regardless of background or pre-conceived notion of what wilderness is about, came away profoundly changed, renewed, and empowered by this experience. There are not many outlets in today’s world that have the ability to affect that kind of change on a person. It is clear to me that wilderness remains relevant–at least to those lucky enough to experience it as per-capita wilderness visitation declines– and that one of the current and future challenges of the Park Service is in how to preserve the integrity of the wilderness resource/experience, while ensuring that our growing population, ever more in need of a wilderness outlet, can still freely access it and in such a way that it is not “loved to death”.
It was a pleasure hiking with and learning from the 10 inspirational students from a variety of majors, who embraced the physical, mental, and academic challenges of the course. Kramer Canup, a former student and teaching assistant on several of my courses, and recent UW Bothell Environmental Studies graduate, provided additional leadership, knowledge, and enthusiasm as a Teaching Assistant. Each student has written about one day of the trip, and offered additional personal thoughts on wilderness. I have spent at least 200 days traveling in the backcountry of Olympic National Park over the last 15 years, and always enjoy getting to know the landscape, its moods, its changes, and its species more intimately, while encouraging others to do the same. I also relish the opportunity for reflection on what our local wilderness areas teach me about myself and the greater landscape of “home”, as well as the many services our wildernesses offer society, from the ecological to the psychological. I especially enjoy introducing wild spaces to students who have not had the opportunity to experience them before. Extended wilderness travel offers us rare time and space (both of which are commodities in today’s world) to think deeply about how we might move forward as a society at this critical juncture in earth’s history, the beginning of the Anthropocene era. It is my hope that this blog conveys the power of the wilderness learning experience and its deep impact on the lives of those who are lucky enough to experience it. For those who do not have the opportunity to experience it, perhaps this blog will bring them a step closer.

If you have questions about this course, or anything you have seen here, feel free to contact me at timbillo (at) uw.edu

Some stats from our trip:
Mileage Covered: ~45 miles
Number of Days in Wilderness: 9
Number of Person-Nights in Wilderness: (12 people x 8 nights) = 96 (for reference, 96 was our contribution to the astounding 40,000 person nights a year typically recorded in Olympic National Park’s backcountry!)
Number of people encountered on the trail excluding the first and last day of the trip: 4
Cumulative altitude gained: ~16,600 feet (about 15,900 feet were lost)
Highest altitude attained: ~6,700 feet
Number of bird species observed: 47
Number of bears observed: 0; most years we observe 1 or 2.
Number of mountain goats observed: 0; most years we observe 1 or 2.
Number of deer observed this year: >9
Number of golden eagles observed this year: 0; most years we observe 1 or 2
Number of bald eagles observed: 1 (at Cedar Lake, where one typically flies in daily to dine on introduced fish).
Number of tailed frogs: at least 10—a record high for us.
Number of salamanders of any kind: 0—a record low for us.

More detailed species lists will be posted at a later date.

ENVIR 280: Documenting 2014-2015 retreat of the Nisqually Glacier

I often tell my students that naturalists are society’s “canaries in the coal mine” when it comes to noticing changes in the natural world. The difference in the extent of glacial ice at the snout of the Nisqually Glacier from just one year to the next astounded us as we held last year’s photo in front of us and compared it to this year’s view.

Nisqually Moraine 2014

Nisqually glacier terminus, on October 12, 2014. For purposes of comparison to the the 2015 photo below, note the location of the light colored triangle shaped deposit on the lateral moraine opposite of the moraine the student is standing on. I’ve outlined the triangle with red. Also, I’ve attempted to trace the outline of glacial ice, which is covered in rock debris for the most part. But note how the snout of the glacier extends well beyond the apex of the aforementioned triangular deposit.

Nisqually 2015 Tim outlined

View of the Nisqually Glacier terminous, from October 16, 2015, approximately 1 year after the first photo. I have used the same red triangle from the first photo to show the location of the triangular deposit on the opposite moraine. I have also traced in the approximate location of glacial ice from October 2014, in red. And I have outlined in yellow the extent of glacial ice on October 2015. Note the massive amount of retreat and ablation from 2014 to 2015! Using subalpine fir trees (approx. 20m tall) on the opposite moraine as a scale bar, you can see that the length of the glacier has shrunken by plus or minus 100m depending on how you measure it. It has also lost a significant amount of width, and has almost certainly lost some depth too.

With my course, we always compare the current extent of the Nisqually Glacier to historical photos and evidence for past glacial activity which we can find on the landscape, but to have created our own historical photo with the class in 2014, and to go back and document change in 2015, was a particularly unique opportunity. No doubt, the warm winter and record low snowpacks of 2014/2015 were a huge contributor to this striking change. Based on recent historical trends, the Nisqually Glacier will likely continue to retreat this year, but it will be exciting to go back in October 2016 to see if the retreat is as drastic as it was in the past year.

We are lucky to live in a time and place where we can see active glaciers. Seeing “living” glaciers and the landforms they create, helps us understand the history and formation of landscapes in the Puget Sound Region, and gives us insight into the effects of climate changes past and present. If the Nisqually Glacier continues to retreat at rates of 50m to 100m a year, however, it is not hard to imagine a time in the not-too-distant future when courses like ours will no longer be able to study active glaciers in this region. The Nisqually Glacier is one of the longest in the Puget Sound Region, and is about 6km long currently, if you assume its start to be near the summit of Mt. Rainier. Presumably the lower elevation portions of this glacier, maybe the lower 3-4 km of it, will be gone in the next 50 years. If I ever have grandchildren, they will not get to experience the Nisqually Glacier or other valley glaciers like it in the Pacific Northwest. Indeed, if my own children go to college and take ENVIR 280, and hike to the same viewpoint, the view they see below them will certainly NOT include glacial ice. Is this a problem for me or for society? Certainly I stand in a privileged position to be able to fret about what my view will be like, or whether my hikes on Mt. Rainier will be on ice or rock, or whether species like the ice worm (see previous blog post) will go extinct. But the loss of glaciers will have implications for society at large. Melting glacial ice keeps our rivers cold and deep, even after winter snows melt. Diminished glacier ice means diminished summer and early-fall stream flows, which will mean water conservation issues for humans, and severe consequences for aquatic life, particularly salmonid fish, which need consistent strong, cold flows all summer long. If the Nisqually River, and other rivers like it are reduced to a warm trickle by summer, this will have profound consequences for river ecosystems across the northwest.  I tend to be fairly objective in my feelings when it comes to environmental change; afterall, there is much evidence on the landscape for dramatic climate swings throughout recent geologic time, and indeed our Pacific Northwest glaciers began retreating before the onset of anthropogenically induced warming. Some species always end up as “winners” and some as “losers”. But when I think that the current acceleration of climate change and drastic warming is caused largely by the actions of humans, I have trouble not viewing the loss of our Pacific Northwest Glaciers as a tragedy. I hope that you can get out and enjoy them now, and be thankful for them, while you can.

Nisqually snout 2014

Close up of the Nisqually Glacier terminus in October, 2014.

Nisuqally snout 2015

Close up of the Nisqually Glacier terminus in 2015.

ENVIR 495C: Ice worms, a legacy of the ice age

The warmest year on record (2015) since 1880 when such records were first recorded  is not the year you would expect to “discover” a glacier and an unusual link to the last ice age. But this is just what happened this year with my class, ENVIR 495C: Landscape Change in the Pacific Northwest. Here is the story.

In this photo, we are posing by a small snowfield on the off-trail traverse from Cedar Lake to Graywolf Pass. The snowfield is labeled 2112:9 in the photo below. On this warm day, we were enjoying the cool blast of air coming out of the stream-carved tunnel from under the snow, an activity I have many times enjoyed in Washington’s mountains. As we stood there enjoying nature’s air conditioning, however, I began to notice some things that told me this was not simply an ephemeral snowfield.

I’ve been hiking the off-trail traverse from Cedar Lake to Graywolf Pass for at least 10 years now. I usually hike it in early to late July, a time of year when the remnants of the previous winter’s snows still blanket most of the route. This summer, however, was perhaps the most anomalous summer in recorded history in the Olympic Mountains. With less than 14% of the normal winter snow pack, the only snow remaining in the mountains, and indeed on the route from Cedar Lake to Graywolf Pass, was snow that has accumulated (and never melted)  in shaded, sheltered pockets in years of much greater than average snow pack. I have always assumed that many of these snow pockets simply melt away during lean snow years, and build up again during strings of above average snow years. Some of these snow pockets, however, take on characteristics of glaciers–that is, they form ice in their interiors as snow compacts and crystals deform, and they start to develop crevasses as they slide downhill under their own weight. In these cases, I’ve always wondered if these were small glaciers that built up during a cooling period 250 years ago, or if they are remnants of the extensive glaciers that covered these mountains 16-17,000 years ago during the last ice age.

Graywolf glaciers

The snowfield depicted in the image above is labeled 2212:9 in this image provided to me by Bill Baccus of Olympic National Park. This snowfield is one of the permanent ice features identified in their recent glacier survey. Unbeknownst to me (until now) this little pocket of snow typically does not melt out even at the end of summer–at least according to aerial surveys that have been done here since the 1980s. I have always assumed that these little pockets of snow probably did melt away completely on strings of dry warm years (of which there were many prior to the Little Ice Age, and a few since the Little Ice Age) and probably reappeared after strings of colder wetter years. Either that, or they were remnants of small glaciers that formed during the “Little Ice Age” 250 years ago, but not remnants of glacial systems that formed during the last major continental-scale ice advance (~17,000 years ago).

 

https://timbillo.files.wordpress.com/2015/10/5f477-dsc_0605.jpg?w=1066&h=1600

As we stood by the mouth of the stream coming out of the snowfield, I noticed some features above that appeared to be crevasses–which would indicate movement of the snowfield. This kind of movement (and crevasse feature) is usually associated with true glaciers, but can sometimes be associated with temporary snowfields. So we went up to check it out. What we found astounded me. The snowfield actually consisted of about a 3 meter thick layer of what appeared to be glacial ice–very dense and blue. Some temporary snow features are underlain by ice snow, but this had the distinct appearance of the dense ice of a glacier. This snowfield, then was actually the remnant of small (and probably stagnant, i.e. no longer very active) glacier, and this feature was the remnant of a crevasse that opened when the glacier was active. But how old could this glacier be? A remnant of the Little Ice Age ice build up 250 years ago? Or a relict of the last true ice age 16,000-20,000 years ago?

https://timbillo.files.wordpress.com/2015/10/353d6-ice2bworm2bgray2bwolf2bcrevasse.jpg?w=385&h=542

Looking into the crevasse I was astonished to see a little wriggling thread, a little less than an inch long. An ice worm, (Mesenchytraeus solifugus)! I was blown away! I have explored many small snow fields and small glaciers, and it is highly unusual to find ice worms, unless the glacier is (or was recently) connected to a larger glacial system. Ice worms are a species that are unique to the Pacific northwest and Alaska. They live in glacial ice and are only associated with glacial ice. That is, they are not known to migrate away from glacial ice and across temporary snowfields. Finding ice worms here implies that this piece of glacial ice is a remnant not just of the Little Ice Age, but of the last true ice age some 20,000 years ago. Peter Wimberger at the University of Puget Sound has found that ice worms in some of the larger glaciers of the eastern Olympics are identical genetically to Alaskan ice worms, implying that the glaciers of the eastern Olympics were connected to the continental ice sheet that flowed down the Puget Sound from the north 17,000 years ago. Thus, this tiny patch of ice must at one time have been contiguous with the continental ice sheet 17,000 years ago (or at least contiguous with glaciers that had been themselves contiguous with the continental ice sheet). Far across the valley, there is a glacier high on Mount Deception in the Graywolf watershed, that is known to have ice worms–so this tiny fragment of ice must have at one time been contiguous with Deception’s glaciers, which themselves were in contact with the continental ice sheet flowing down the Puget Trough. I don’t see evidence that the Upper Graywolf Glaciers were in contact with Deception’s glaciers in the Little Ice Age, so my guess is that this patch of ice (2112:9) was last connected to Deception’s glaciers thousands of years ago. Simply amazing to think about. And make no mistake about it, ice worms are one of the more endangered organisms in the context of predicted changes in climate for this region. This small population of ice worms we discovered will disappear (if it hasn’t already) if we get another summer or 2 like the summer of 2015.

A close-up view of the worm, alive in a piece of snow, held by a student.

Student Shane Kelly holds an ice worm, a direct descendant of the last ice age, in a small melting snowball.

Life size image of the same ice worm depicted above. With more searching, we found hundreds of ice worms in this mini-glacier. They are known to feed on algae in the snow, and can burrow through ice with an anti-freeze like substance in their body. They burrow their way to the surface at night to feed on algae, thereby avoiding the harmful (to them) warmth of the sunshine, as well as predators (like Rosy Finches–which will also be harmed by loss of glaciers) who eat them. This population of worms, as far as I can see it, is essentially doomed here. If this ice patch didn’t melt out completely this summer, it will be gone within a few more similar summers, and gone with it will be this population of ice worms. A similar fate awaits any small populations of worms left in any of the other small ice patches around the Olympics.